Marking amphibians, reptiles and marine mammals: animal welfare, practicalities and public perceptions in New Zealand

David J Mellor, Ngaio J Beausoleil, Kevin J Stafford
Marking amphibians, reptiles and marine mammals: animal welfare, practicalities and public perceptions in New Zealand

David J Mellor, Ngaio J Beausoleil, Kevin J Stafford
Cover photo: Female sea lion with brand satellite transmitter (shoulder), time-depth recorder (mid-back) and VHF transmitter (hip) temporarily glued to the fur. She also has plastic flipper tags as does her pup.

PHOTO: © PADRAIG DUIGNAN, MASSEY UNIVERSITY.

All photographs: Crown Copyright, Department of Conservation Te Papa Atawhai unless otherwise credited.

© Copyright June 2004, New Zealand Department of Conservation

ISBN 0-478-22563-6

In the interests of forest conservation, DOC Science Publishing supports paperless electronic publishing. When printing, recycled paper is used wherever possible.

This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing by Sue Hallas and design/layout by Ruth Munro. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Public perceptions and support</td>
<td>7</td>
</tr>
<tr>
<td>Why and how we mark animals</td>
<td>11</td>
</tr>
<tr>
<td>General safeguards for marking wildlife</td>
<td>13</td>
</tr>
<tr>
<td>Temporary methods</td>
<td>16</td>
</tr>
<tr>
<td>Paints or dyes</td>
<td>18</td>
</tr>
<tr>
<td>Attached streamers, adhesive tapes or trailing devices</td>
<td>19</td>
</tr>
<tr>
<td>Hair/fur removal</td>
<td>21</td>
</tr>
<tr>
<td>Fluorescent powders</td>
<td>22</td>
</tr>
<tr>
<td>Radioisotope marking</td>
<td>24</td>
</tr>
<tr>
<td>Semi-permanent methods</td>
<td>28</td>
</tr>
<tr>
<td>Tags</td>
<td>30</td>
</tr>
<tr>
<td>Neck collars, harnesses or bands</td>
<td>31</td>
</tr>
<tr>
<td>Nocturnal lights</td>
<td>34</td>
</tr>
<tr>
<td>Radio-, satellite- and bio-telemetry and archival data recorders</td>
<td>36</td>
</tr>
<tr>
<td>Permanent methods</td>
<td>38</td>
</tr>
<tr>
<td>Hot, freeze and chemical branding</td>
<td>42</td>
</tr>
<tr>
<td>Tattooing</td>
<td>44</td>
</tr>
<tr>
<td>Passive Integrated Transponders (PITs)</td>
<td>46</td>
</tr>
<tr>
<td>Visible implant fluorescent elastomer (VIE) tags</td>
<td>48</td>
</tr>
<tr>
<td>Tissue removals: ear notching; toe, disc and web clipping</td>
<td>50</td>
</tr>
<tr>
<td>Vital stains</td>
<td>52</td>
</tr>
<tr>
<td>Natural marking identification</td>
<td>53</td>
</tr>
<tr>
<td>Concluding comments</td>
<td>55</td>
</tr>
</tbody>
</table>
Introduction

Identification of wildlife aids biological study and conservation management and, usually, the most reliable approach is to apply an artificial mark. Marking can affect the animals involved through the act of marking itself, the wearing of the mark and the procedures required for observing the mark. Adverse effects may be evident immediately or appear long after the procedure is performed, and may have implications for animal welfare, ecological balance, the value of the information obtained and public support for wildlife research.

In terms of animal welfare, virtually all marking methods require capture, which is stressful\(^1\) to wild animals. Many methods also involve tissue damage and therefore cause pain. Persistent infection or protracted healing may extend the period of pain and change an animal’s behaviour and energy use. Moreover, after healing, wearing the mark may alter an animal’s appearance, social interactions, other behaviours and survival. Repeated capture and handling for re-identification can cause persistent low-level stress, which may make marked animals more vulnerable to the effects of other natural stressors.

The adverse effects of marking may extend beyond the individual animal to include disruptions to populations or interactions between species and, thereby, disturbances to ecological balance. For instance, marking may restrict an animal’s movement or feeding, alter predator-prey relationships, disrupt breeding or social interactions or alter distribution or migration patterns.

Each marking method has its own advantages and disadvantages. Scientists need to weigh up the anticipated benefits of the research with the probable adverse consequences of marking for

\(^1\) Stress represents physiological responses to significant challenges, which can be emotional and/or physical. They elicit well-documented ‘fight-or-flight’ responses and changes that help to deal with possible injuries. Externally observable signs of stress include aggression, struggling or freezing behaviours, abnormal postures, vocalisation or its absence, impaired grooming, altered activity patterns, shivering, altered breathing, change in skin colour and body temperature change. The associated physiological responses may be measured.
individual animals, populations and ecosystems, because such negative effects would compromise the quality of the data collected. If a mark is lost or illegible, or if the data collected are inappropriate or are corrupted by marking, reduced animal welfare and other negative effects will have occurred without redeeming benefit. Application of the General Safeguards, as outlined below, together with those safeguards specific to each method, should help to maximise the benefits of marking programmes.

Wildlife managers or researchers who consider using a new marking method, or the application of an existing method to a new population, must first conduct an evaluation of the effects of the method itself on individual animals, the population or ecosystem. Such preliminary studies will help to determine the appropriate welfare safeguards, and give an indication of the reliability of the data obtained from that particular marked population.
Public perceptions and support

Public support for government-funded wildlife research is crucial. There will always be some people who object to interfering with wildlife in any way, and others who object to inflicting pain or stress on any wild animal. However, the majority of interested people appreciate the role of marking in wildlife biology and conservation, and it is to those people that scientists must demonstrate that the chosen methods are both suitable and humane.

Marking methods that appear to seriously harm animal welfare are likely to be unacceptable to the public. This applies in particular to methods that markedly change the appearance of the animal, obviously cause pain and/or stress, grossly alter behaviour or cause death. It is these types of negative effects that lead to public disquiet about wildlife marking. However, there is often a disparity between the real and perceived effects of marking on animal welfare. Methods that appear to the public to cause serious welfare problems, but in fact do not, may be more appropriate than other methods that are mistakenly considered to be benign. Therefore, it is critical that the public be informed about the benefits, risks and safeguards associated with each marking method used in New Zealand.

In the research context, all animal use in New Zealand must be approved by an Animal Ethics Committee (AEC). The law requires that each AEC include, in addition to its scientific and technical members, a lay member (usually nominated by a local authority), an animal welfare advocate (usually nominated by the Royal New Zealand Society for the Prevention of Cruelty to Animals) and an independent veterinarian (nominated by the New Zealand Veterinary Association). These latter three members act as watchdogs on behalf of animals, and effectively represent the public interest. The members of the AEC must balance the anticipated value of the research against the pain and stress likely to be caused to the animals involved, and, in the case of marking, must decide whether the method is acceptable for the species and the research planned.

There may be conservation and management activities involving marking that do not require formal approval from an AEC. We recommend that all marking methods used in such contexts, whether invasive or not, be assessed generically, preferably by each organisation’s AEC. We also recommend that guidelines be drawn up for conservation managers, which include comprehensive species- and population-specific analyses of the practical and animal welfare advantages and disadvantages of each method, the safeguards, possible sources of public disquiet and the value of the information gained. They should be reviewed regularly and updated in the light of field experience and new research findings.

Public discontent with wildlife marking usually occurs when procedures are undertaken without the public being informed. Public perception of the degree of harm to welfare, whether accurate or not, must be considered if support for wildlife research is to continue. Most people respond positively to clear descriptions of project details and, especially, to the knowledge that measures have been put in place to safeguard animal welfare. Therefore, when animals are marked using a painful or stressful method, the following important steps should help to reduce public disquiet.

1. The public should be provided with the justification for the marking programme and the method chosen and a careful explanation of the benefits and general and specific safeguards employed.

2. Marking should be carried out only by knowledgeable and proficient personnel.

3. Anaesthesia and/or pain control should be used where appropriate.

4. Wounds should be treated appropriately.

5. The effects of marking should be monitored, untoward effects noted and, when necessary, remedial actions taken.

6. The outcomes of the research should be made public.

Another issue to consider is the extent of public access to the study site. If members of the public are unlikely to encounter marked animals, researchers may be more confident when
applying highly visible marks. In areas of high public access, the use of such methods may be unsuitable. However, it is important to remember that public perceptions of welfare problems may not accurately reflect actual problems, and methods which appear benign to the casual observer, may in fact cause serious harm. Nevertheless, an informed public will be less likely to respond negatively to encounters with marked wildlife.

Finally, it is imperative that information about wildlife marking be displayed in the most appropriate location. Where members of the public are likely to encounter marked animals, information about specific marking programmes should be prominently displayed or be readily available. Forewarning the public about the benefits and disadvantages, and the safeguards taken to minimise these disadvantages, will help to reduce public concern.

This booklet focuses on animal welfare impacts, practicalities and public perceptions associated with a range of methods used to mark wildlife found in and around New Zealand, in particular amphibians, reptiles and marine mammals. Further information about the methods discussed here is provided in the companion DOC publication *Methods for marking New Zealand wildlife: amphibians, reptiles and marine mammals* (2004).
Why and how we mark animals

Reasons for marking animals include:

• To identify individuals or groups of animals in order to study demographics, behaviour, ecology and other aspects of the lives of wild animals
• To estimate population size and to determine rates of survival, reproduction and recruitment within specific populations
• To determine the ranges and distributions of individuals, populations or species
• To identify particular stocks and rates of stock mixing (This kind of information is used extensively to monitor populations undergoing conservation management.)
• To identify individual animals for behavioural studies
• To develop and verify aging techniques and to ascertain growth rates in individual animals

The methods described below have been classified according to mark durability, rather than ranked by their potential to cause animal welfare problems, for several reasons. The ranking of methods on animal welfare grounds would be complicated and subjective, and we do not believe that enough information exists at the present time to classify marking methods on welfare grounds alone. In addition, the potential welfare problems would differ according to species, the environment and other factors. Finally, wildlife practitioners, for whom this report is primarily written, will want to focus on the method first and then consider the associated animal welfare implications. Therefore, the methods outlined in this report are broadly categorised as temporary, semi-permanent and permanent (Table 1).

For each method, this booklet lists the inherent advantages and disadvantages, the safeguards taken to help to minimise disadvantages relevant to animal welfare, and the method’s acceptability, in terms of practicality, biological function and animal welfare, and to the public. In addition, a list of General Safeguards which apply to all marking methods has been included, and must be referred to and followed by all personnel working with wildlife.
TABLE 1. IDENTIFICATION METHODS.

<table>
<thead>
<tr>
<th>TEMPORARY</th>
<th>SEMI-PERMANENT</th>
<th>PERMANENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paints or dyes</td>
<td>Tags</td>
<td>Hot, freeze or chemical branding</td>
</tr>
<tr>
<td>Streamers, adhesive tapes</td>
<td>Neck collars, harnesses, bands</td>
<td>Tattooing</td>
</tr>
<tr>
<td>trailing devices</td>
<td>Nocturnal lights</td>
<td>Passive integrated transponders (PIT)</td>
</tr>
<tr>
<td>Hair/fur removal</td>
<td>Telemetry (radio, satellite, bio)</td>
<td>Visible implant fluorescent elastomer tags (VIE)</td>
</tr>
<tr>
<td>Fluorescent powders</td>
<td>and archival data recorders</td>
<td>Tissue removal: ear notching; toe, disc and web clipping</td>
</tr>
<tr>
<td>Radioisotope marking</td>
<td></td>
<td>Vital stains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using natural markings</td>
</tr>
</tbody>
</table>

Overloaded tuatara: *(Sphenodon punctatus)* male, showing identification markings and with a radio transmitter attached, Stephens Island, July 1977. PHOTO: DON NEWMAN.

Chevron skink *(Oligosoma bomalonotum)* with transmitter. This photo, taken in 2000, shows the much smaller size of transmitters now used. PHOTO: KERI NEILSON.
General safeguards for marking wildlife

1. It must be demonstrated that marking is necessary to achieve the proposed research objectives.
2. The purposes and benefits of the method chosen must be sufficient to justify its adverse effects.
3. Devices and methods must be selected carefully. Where there is a choice, choose a device that has a size, weight and configuration appropriate for the animal’s species, size, behaviour and habitat (i.e. a device that minimises any adverse effects on the animal).
4. Methods must meet the precise objectives of the study in terms of data required, study duration, recognition proximity (close/distant) and specificity (individual/group).
5. Only experienced and/or well-trained personnel who are proficient in the method should carry out marking.
6. Personnel should assess marking procedures which are new, or new to the particular population, on captive individuals or allied species before attempting to mark wild populations.
7. Since any handling may cause short-term stress, use gentle and minimal handling, and for the shortest time possible.
8. If the adverse effects of a method are not known, the literature must be reviewed or laboratory assessments made to discover these and measures must be taken to minimise them.
9. Accidental injury during marking should be treated and, if sufficiently serious, the animal should be euthanised.
10. Personnel must minimise the transmission of infectious diseases and parasites between animals during the marking procedure.
11. Marker-induced distortions of survival, reproductive success, behaviour and interactions between conspecifics and with other species need to be assessed and measures devised to minimise them. Data analysis must take account of such effects.
12. Wherever possible, monitor the health and welfare of marked animals.
13. Marking should not compromise conservation strategies for endangered or threatened species (e.g. kill methods or those that adversely affect reproduction should not be used), nor should it adversely affect the ecological balance or the environment.
Temporary methods

Temporary identification methods are those that are required to last for only a short time relative to the life span of the animal (Table 2). They tend to be readily visible from a distance, because of their contrasting colours and bold characters and symbols. Temporary marks are often used if more permanent methods of identification are expected to adversely affect the animal’s welfare, or if no other options are viable.

Table 2. Temporary Identification Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Speed of Application</th>
<th>Complexity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paints and dyes</td>
<td>Fast</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Streamers, adhesive tapes,</td>
<td>Intermediate–Fast,</td>
<td>Low–Intermediate,</td>
<td>Low</td>
</tr>
<tr>
<td>trailing devices</td>
<td>depending on method</td>
<td>depending on method</td>
<td></td>
</tr>
<tr>
<td>Hair/fur removal</td>
<td>Fast</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Fluorescent powders</td>
<td>Fast</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Radioisotope marking</td>
<td>Slow–Fast, depending on</td>
<td>Intermediate–High,</td>
<td>Intermediate–High,</td>
</tr>
<tr>
<td></td>
<td>attachment method, vehicle,</td>
<td>depending on attachment</td>
<td>depending on attachment</td>
</tr>
<tr>
<td></td>
<td>isotope</td>
<td>method, vehicle, isotope</td>
<td>method, vehicle, isotope</td>
</tr>
</tbody>
</table>

1. Ranks in columns (e.g. slow, intermediate and fast) are qualitative, comparative scores for the parameter listed for the methods in the table.
<table>
<thead>
<tr>
<th>SHORT-TERM STRESS</th>
<th>INFLUENCE OF OPERATOR</th>
<th>VISIBILITY</th>
<th>APPROPRIATE SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low: some handling</td>
<td>Low</td>
<td>High</td>
<td>Terrestrial and marine mammals, reptiles, invertebrates</td>
</tr>
<tr>
<td>Low–Intermediate, depending on method</td>
<td>Intermediate</td>
<td>High</td>
<td>Birds, marine and terrestrial mammals, reptiles, amphibians</td>
</tr>
<tr>
<td>Intermediate, because of handling, machine noise, vibration</td>
<td>Low</td>
<td>Moderate–High</td>
<td>Haired/furred terrestrial mammals, pinnipeds</td>
</tr>
<tr>
<td>Low: handling</td>
<td>Low</td>
<td>Moderate–High</td>
<td>Small nocturnal mammals, reptiles, invertebrates</td>
</tr>
<tr>
<td>Low–High, depending on attachment method, vehicle, isotope</td>
<td>High</td>
<td>Low</td>
<td>Small or nocturnal terrestrial mammals, reptiles, amphibians, invertebrates</td>
</tr>
</tbody>
</table>

Clipping seal pup. PHOTO: PADDY RYAN.
PAINTS OR DYES

Pigmented compounds such as paints and dyes are used to temporarily mark a wide variety of animals (Table 2). Paint can be applied to the surface of the integument or hair, and is usually lost over time through wear, skin sloughing or hair shedding. The durability of paint marks is dependent on the animal’s environment and behaviour, as well as characteristics of the paint itself. Dyes and bleaches tend to produce longer-lasting changes when applied to hair or fur. Dyes impregnate the hair with colour, whereas bleaches remove pigment; the durability of marks made by dyes and bleaches depends mainly on hair shedding, but some dyes also fade.

Advantages

- Commonly available, versatile, cost-effective, quick and easy to apply
- Readily visible to observers at a distance
- Do not usually alter the behaviour of the marked animal
- Dyes and bleaches are useful for marking the hair of pinnipeds because of the durability of the marks in water

Disadvantages

- May be absorbed through the skin or ingested during grooming, and some paints/dyes may be toxic
- May increase the visibility of study animals to human observers and to predators or prey
- May cause marked animals to be treated differently by conspecifics
- The physical presence of paint or solvents may affect the animal’s behaviour, e.g. by increasing the time spent grooming

Safeguards

- Adhere to the General Safeguards listed on page 13
- Choose non-toxic paints, dyes, solvents and bleaches
Paint use is not advised on thickly furred animals, as fur clumping and/or matting can cause fur loss or skin problems, and such animals often remove (and ingest) paint quickly by grooming.

Acceptability

- **Practicality**: High, because of their versatility, visibility, low cost and ease of application.
- **Biological and welfare acceptability**: High, provided all safeguards are followed, owing to the temporary nature of the mark, low stress associated with application, low physiological cost of wearing the mark and generally minimal effect on behaviour and survivorship.
- **Public perceptions**: Generally neutral or positive, unless marks make animals more visible to predators or prey, alter social interactions or cause toxic effects.

ATTACHED STREAMERS, ADHESIVE TAPES OR TRAILING DEVICES

Streamers and coloured or reflective tapes have been attached to a variety of animals in order to increase their visibility for a short time (Table 2). In addition, trailing devices (e.g. spools of thread) can be used to track animals over short distances or periods of time. Streamers or tapes are chosen to contrast with the natural colour or texture of the animal, and are generally attached to the integument or hair using non-toxic glue. Mark durability depends on the material, method of attachment, environment and habits of the animal.

Advantages

- Commonly available, versatile, cost-effective and often easy to apply (excluding marine mammals)
- Readily visible to the observer at a distance
- Marks attached with glue eventually fall off
Disadvantages

- Difficulty with attachment and retention of marks in marine mammals due to water friction
- The physical presence of the mark may affect the animal’s behaviour: for example, the animal may vigorously and/or persistently attempt to rid itself of the device, which could result in stress or injury
- Marks, especially trailing devices, may cause the animal to become entangled in the device or snagged on features of the environment, which can lead to injury or death
- May increase visibility of study animals to human observers and to predators or prey
- May cause marked animals to be treated differently by conspecifics
- Lost marks may harm other animals by entanglement or ingestion
- Invasive anchorage of marks in tissue (e.g. in cetaceans) usually causes tissue trauma and pain

Safeguards

- Adhere to the General Safeguards listed on page 13
- Select non-toxic glue
- Select marks that minimise untoward behavioural responses, entanglement and snagging
- Marks or trailing devices that will not degrade or drop off the animal must be removed
- Consider using biodegradable materials or retrieving lost marks that may be hazardous to other animals
- For invasive tissue anchorage, use appropriate restraint, anaesthetic, anti-septic and measures of pain control

Acceptability

- Practicality: High, because of their visibility, low cost and relative ease of application (excluding cetaceans).
- Biological and welfare acceptability: High, provided all safeguards are followed, owing to the temporary nature and eventual disengagement of most marks. Exceptions include
devices that alter behaviour or cause entanglement, pain and/or tissue trauma.

- **Public perceptions**: Generally neutral or positive if the benefits and safeguards are explained. Negative perceptions would occur with entanglement, snagging (e.g. finding dead snagged animals), premature death and/or aberrant behaviour. Invasive attachment of marks would be of particular concern to the public.

HAIR/FUR REMOVAL

In those animals with sufficient hair/fur (Table 2), it can be removed by shearing, clipping or with chemical depilatory pastes to create identifying marks. Groups or individuals may be identified by using combinations of different numbers and/or mark locations.

Advantages

- Using clippers, hair removal is cost-effective, easy to achieve and usually painless
- Marks are usually highly visible, especially if the under-fur is a contrasting colour
- Can be combined with paint or dye to increase visibility or the number of animals individually marked

Disadvantages

- Only animals with sufficient hair/fur can be marked
- Limited application in small animals
- Marks last only until the next moult
- Handling may be protracted and therefore stressful, especially if accompanied by machine noise and vibration
- May increase visibility of study animals to human observers and to predators or prey
- May cause marked animals to be treated differently by conspecifics
- Chemical depilatory pastes may cause painful or stressful skin irritations
- Extensive hair removal may result in hypothermia or sunburn
Safeguards

- Adhere to the General Safeguards listed on page 13
- Extensive hair removal should be avoided
- Assess the welfare impacts of depilatory agents before use
- If hair/fur removal is combined with other methods (e.g. paints or dyes) apply their safeguards too

Acceptability

- **Practicality**: High, because of its visibility, low cost and relative ease of application.
- **Biological and welfare acceptability**: High, provided all safeguards are followed, owing to non-invasive application, temporary nature, low physiological cost of wearing the mark and generally minimal effect on behaviour, reproduction and survivorship. However, protracted handling accompanied by machine noise and vibration, or skin irritation due to chemical application, may adversely affect animal welfare.
- **Public perceptions**: Generally neutral or positive. Skin irritation (by chemical depilatories), sunburn, debilitating hypothermia and/or extensive hair/fur removal would generate significant public concern.

FLUORESCENT POWDERS

Nocturnal animals can be identified by dusting them with fluorescent powder. The released animal leaves a trail of fluorescence that can be detected in the dark using ultraviolet (UV) lamps. The animal and the trail are detectable for a few nights after dusting. This method is most useful in small mammals, as their fur helps retention of the powder, but it has also been used to track reptiles (Table 2).

Advantages

- Allows tracking and identification at night
- Powder is easy to apply, cost-effective and relatively easy to detect (with UV lamps)
- Information can be gathered immediately or over the next few nights
• Particularly useful for assessing movement patterns, and home range and habitat use

Disadvantages
• Data must be gathered within a few nights, owing to powder loss through environmental contact and grooming
• Trail detection is hindered by vegetation cover, precipitation and high ambient light intensity
• May be absorbed through the skin or ingested during grooming, and some powders may be toxic
• Powder may influence heat absorption in reptiles
• Marked animals are often very conspicuous during the day owing to the brightness of the powder, which may affect predator–prey and/or intraspecific interactions
• Marked animals may be more conspicuous at night if predators, prey and/or conspecifics can detect fluorescence
• The physical presence and/or taste of the powder may affect the animal’s behaviour, e.g. by increasing time spent grooming

Safeguards
• Adhere to the General Safeguards listed on page 13
• Choose non-toxic powders
• Do not apply powders to animals that are normally active during the day, to minimise effects on predator–prey and intraspecific interactions
• Apply powder only to ventral and lateral parts of the animal, to minimise effects on heat absorption

Acceptability
• Practicality: High, because of the visibility of marked animals at night (under UV light), low cost and ease of application.
• Biological and welfare acceptability: Moderate, provided all safeguards are followed. The mark is short-lived, wearing it carries a low physiological cost and, generally, effects on behaviour, reproduction and survivorship are low. However, bright powders may make marked animals more conspicuous
during the day, or at night if predators, prey or conspecifics can detect fluorescence.

- **Public perceptions**: Generally neutral or positive if the purposes and safeguards are properly explained. However, the difference between fluorescent powders and radioactive materials should be clarified to avoid confusion and negative public reactions.

RADIOISOTOPE MARKING

Radioactive material can be applied in various ways in order to study small, camouflaged, retiring or nocturnal animals, which would otherwise be difficult to study (Table 2). Each radioactive isotope has an energy emission profile that allows detection and can cause tissue damage (radio-toxicity). The choice of radioisotope depends on availability, type of radiation emitted, radio-toxicity, half-life of the isotope, distance of detection required and the length of the study. Radioactive material can be incorporated into externally attached wires, pins, capsules or tags, or attached to leg bands, collars or harnesses (see below). Radioisotopes can also be implanted into the body with a needle, which often requires an anaesthetic. Inert implanted radioisotopes are not metabolically active, and are not incorporated into the tissues. Metabolisable radioisotopes can be implanted in the same manner as inert tags, or by forced or natural feeding. These marks are incorporated into the tissues by the metabolic processes of the body. Metabolically active radioisotopes can be passed on to offspring and may be voided in urine and faeces, thereby allowing the study of movement and dispersal of labelled animals, as well as their reproductive success.

Advantages

- Enable researchers to study the movement, behaviour, social interactions, home ranges, migration, predator–prey interactions and other features of animals which are otherwise difficult to study
- Wide variety of materials and attachment methods allows application to a range of species
• Allow tracking of labelled animals for long periods without direct interference by the researcher
• Radioactive marks cannot be detected by the labelled animal or its conspecifics, predators or prey

Disadvantages
• Non-target predators may become labelled by consuming radioactive prey. Other non-target animals may become labelled by uptake of radioisotopes lost to the environment
• The environment itself may become contaminated
• Identification of individual animals is not possible
• Exposure to radioactive material may be hazardous to researchers and members of the public
• Methods are expensive (equipment, safety precautions, special training, licences and permits) and laborious (preparation and handling of radioactive material)
• Tissue damage due to radiation may seriously debilitate or kill the labelled animal
• The behaviour of labelled animals may be seriously affected by radio-toxic effects, thereby invalidating behavioural data
• Handling and radioisotope introduction may cause stress, pain and/or infection (in the case of implanted marks)
• Recapture for tag recovery may be necessary to avoid environmental contamination or minimise radio-toxicity, thereby increasing the handling stress experienced by labelled animals
• Other disadvantages may be related to external methods of attachment (see Tags and Neck collars, harnesses or bands)

Safeguards
• Adhere to the General Safeguards listed on page 13
• If possible, use alternative methods for identifying or tracking animals
• Carefully choose the radioisotope based on the detection distance required, length of study, radioisotope half-life, emission profile and radio-toxicity
• Limit the animal’s exposure to the radioactive material by retrieving the label and using shields (e.g. capsules for inert implantations)
• Monitor labelled animals for any symptoms of radio-toxicity and remove the label, or humanely kill the animals, when any such symptoms are detected
• Remove all external attachment devices from the animals at the end of the study
• Retrieve any radioactive material lost to the environment
• Follow all legal and institutional safety precautions

Acceptability

• Practicality: Poor to moderate; only justifiable when safer, less complex, less laborious and less expensive alternatives cannot be used.
• Biological and welfare acceptability: Poor to moderate, even when all safeguards are followed, as all radioactive materials have the potential to cause radio-toxic effects that could impact negatively on the health, behaviour and survivorship of labelled and non-target animals, and contaminate the environment.
• Public perceptions: Most likely to be strongly negative, especially if labelled and non-target animals suffer debilitating or fatal radio-toxic effects, or if this were only suspected to be the case. The public would also view the possibility of environmental radioactive contamination most unfavourably.
Goldstripe gecko (Hoplodactylus chrysosireticus), Taranaki. *Top:* with temporary markings using xylene-free silver ink pen; *bottom:* without markings.

PHOTOS: HALEMA JAMIESON.
Semi-permanent methods

Semi-permanent methods of identification are designed to last from days to months or years; however, most marks are lost within the lifetime of the animal. Therefore, researchers should select materials and attachment methods appropriate to the desired study duration. Semi-permanent methods such as tags, collars, harnesses and bands can be used exclusively to differentiate marked and unmarked animals, but they are generally coupled with additional identifying information, and are also commonly used to attach telemetric and other equipment (Table 3). Such devices often need to be removed, or are designed to fall off, to facilitate recovery of data and/or to avoid hindrance to the growth and development of the animals.

TABLE 3. SEMI-PERMANENT IDENTIFICATION METHODS¹.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>SPEED OF APPLICATION</th>
<th>COMPLEXITY</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tags</td>
<td>Intermediate–Fast, depending on location</td>
<td>Low–Intermediate, depending on location and species</td>
<td>Low–Intermediate, depending on tag material</td>
</tr>
<tr>
<td>Neck collars, harnesses, bands</td>
<td>Slow–Fast, depending on method</td>
<td>Intermediate–High, depending on method</td>
<td>Low–High, depending on equipment</td>
</tr>
<tr>
<td>Nocturnal lights</td>
<td>Slow–Fast, depending on method of attachment</td>
<td>Low–High, depending on method of attachment</td>
<td>Low–High, depending on method of attachment</td>
</tr>
<tr>
<td>Telemetry (radio, satellite, bio), archival data recorders</td>
<td>Slow–Intermediate, depending on method of attachment</td>
<td>Intermediate–High, depending on method of attachment and equipment</td>
<td>Intermediate–High, depending on method of attachment and equipment</td>
</tr>
</tbody>
</table>

¹ Ranks in columns (e.g. slow, intermediate and fast) are qualitative, comparative scores for the parameter listed for the methods in the table.
Seal with transponder (an external device, glued to the fur, which drops off when glue fails or when fur is shed as part of the normal growth cycle). PHOTO: BRUCE DIX.

<table>
<thead>
<tr>
<th>SHORT-TERM STRESS</th>
<th>INFLUENCE OF OPERATOR</th>
<th>VISIBILITY</th>
<th>APPROPRIATE SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate: handling, some pain, infection risk</td>
<td>Intermediate–High, depending on location</td>
<td>Low–High, depending on location and tag size</td>
<td>Terrestrial and marine mammals, some reptiles and amphibians, fish</td>
</tr>
<tr>
<td>Intermediate–High, depending on species and method: handling, possible anaesthetic use</td>
<td>Intermediate–High, depending on method</td>
<td>Moderate–High, depending on device, material, location</td>
<td>Terrestrial mammals, birds, some small cetaceans, pinnipeds, some reptiles and amphibians</td>
</tr>
<tr>
<td>Low–High, depending on method of attachment: handling, possible anaesthetic use</td>
<td>Intermediate–High, depending on method of attachment</td>
<td>Moderate–High, depending on distance, light intensity, viewing method</td>
<td>Nocturnal terrestrial mammals, reptiles, amphibians, some invertebrates</td>
</tr>
<tr>
<td>Intermediate–High, depending on method of attachment: handling, possible anaesthetic use</td>
<td>High</td>
<td>Low–Moderate, depending on attachment method</td>
<td>Any animal large enough to carry equipment without detrimental effect</td>
</tr>
</tbody>
</table>
TAGS

Tags are made from a variety of materials, most commonly metal or plastic, and are usually augmented by alphanumeric codes for individual or group recognition (Table 3). In general, there is a trade-off between tag size and visibility, and the negative effects on the wearer; larger tags are more visible, but affect the wearer more. The endurance of a tag depends on factors such as tag material, size, shape and placement (e.g. in ears, webs, flippers, fins, toes or jaws), as well as wearer characteristics that include anatomy, behaviour, habitat and infection rate. Tags may also be used as attachment vehicles for radioactive marks or telemetric equipment used for tracking animals.

Advantages

- Highly versatile, cost-effective, easy to apply and result in unambiguous identification
- Often visible to the observer at a distance, making recapture unnecessary (depending on tag size, colour, location, etc.)
- Can be returned to the research team after loss or death of the wearer, thereby making public reporting possible

Disadvantages

- High rates of mark loss
- Tag endurance is influenced greatly by operator proficiency
- May cause pain-inducing tissue damage or lead to the development of infection
- The physical presence of the mark may affect the animal’s behaviour: for example, the animal may vigorously and/or persistently attempt to rid itself of the device, which could result in stress or injury
- May increase visibility of study animals both to human observers, and to predators or prey
- May cause marked animals to be treated differently by conspecifics
- Recapture may be necessary for re-identification of tagged animals
Safeguards
• Adhere to the General Safeguards listed on page 13
• Select a tag and body location appropriate to the anatomy and behaviour of the wearer, duration of the study and distance at which identification is required
• Ascertain whether measures are required to reduce pain or the risk of infection (e.g. antiseptics)
• Quantify and account for rates of tag loss specific to the population being tagged, especially in population studies. This can be achieved by double tagging or by applying a less visible, permanent mark such as a tattoo, in conjunction with tagging

Acceptability
• Practicality: High, because of their versatility, low cost and ease of application.
• Biological and welfare acceptability: High, provided all safeguards are followed. In general, tags are small relative to the size of the wearer, and have minimal impact on behaviour and survivorship. Exceptions include animals that experience long-lasting pain or infection as a result of tagging, or those that lose their marks very soon after tagging. The welfare of such animals would be harmed (e.g. pain of application) with no redeeming benefit.
• Public perceptions: Generally neutral or positive, as the public is likely to identify tags as associated with research efforts. In addition, the fact that farm animals are commonly seen wearing tags may reduce public disquiet about the method. Tagging that results in long-lasting pain or infection or tags that are disproportionately large relative to the size of the animal would likely be viewed negatively by the public.

NECK COLLARS, HARNESSSES OR BANDS
Neck collars and harnesses are primarily used as vehicles for the attachment of telemetric transmitters, nocturnal lights or radioactive marks. Collars and harnesses are most often used on terrestrial mammals, and occasionally on birds, pinnipeds and
dolphins (Table 3). Legbands, armbands and waistbands are usually inscribed with identifying symbols or codes, or are augmented with identifying tags. Such bands are often used on reptiles, amphibians and birds. The longevity of collars, harnesses and bands depends on the device’s material and design, and the habitat and characteristics of the wearer such as behaviour, age and sex.

Advantages

- Allow the attachment of telemetric equipment, lights and other marking devices
- Wide range of designs, allowing application to species ranging from quite small to very large
- May allow identification or tracking of marked animals from a distance (e.g. by radio-telemetry), making disturbance or recapture unnecessary

Disadvantages

- Devices that are too loose can chafe (damaging underlying skin), snag on elements in the environment or lead to premature loss of the mark
- Devices that are too tight can lead to impaired circulation, skin damage, infection and even loss of the marked appendage, and can also interfere with feeding or breathing, especially in animals growing or developing while wearing the mark (amphibians, reptiles, juveniles)
- The physical presence of the mark may affect the animal’s behaviour: for example, the animal may vigorously and/or persistently attempt to rid itself of the device, which could result in stress or injury
- Operator proficiency has major impact on the success of the method
- Marked animals must be monitored regularly to ensure their welfare is not harmed
- Marked animals may have to be recaptured to remove collars, harnesses or bands, or for re-identification
- May increase the visibility of study animals to human observers and to predators or prey
• May cause animals to be treated differently by conspecifics
• Use of such devices on marine mammals is problematic, owing to the increases in hydrodynamic drag they cause and subsequent changes in behaviour and energy use

Safeguards
• Adhere to the General Safeguards listed on page 13
• Devices must be designed and fitted carefully, ensuring that they are neither too tight nor too loose, and must allow for growth or development, and weight loss or gain
• Corrodible or hard parts must not come into contact with the surface of the animal as they may damage underlying skin by rubbing or electrolysis
• Devices must be appropriate for the animal’s stage of life (e.g. growing, pregnant, lactating, mature) and specific attributes (e.g. amphibians and reptiles usually grow throughout their lives)
• Animals must be monitored regularly in order to prevent or rectify problems associated with the wearing of a collar, harness or band
• Any equipment attached to such devices must be kept to a size, weight and configuration appropriate to the animal’s size, behaviour and habitat
• The eventual removal or release of such devices must be considered

Acceptability
• *Practicality*: Moderate, because they are versatile and relatively cheap, but significant expertise and effort are required to minimise harmful effects on the animals. In addition, monitoring and removal of devices may be required.
• *Biological and welfare acceptability*: Moderate, provided all safeguards are followed. The potential for negative effects on health, behaviour and survivorship is significant, especially in growing or developing animals. For pinnipeds and dolphins wearing collars or harnesses, the effects on behaviour and energy use can be marked.
• Public perceptions: Generally neutral or positive, as the public would probably identify such devices as being associated with research efforts, e.g. with international bird banding programmes. However, devices that obviously impact on health, or alter behaviour or survivorship, would be perceived negatively. This would be especially true of those devices that cause gross injuries owing to a poor fit, or lead to entanglement or strangulation.

NOCTURNAL LIGHTS

Chemical, electrical or radioactive light sources can be attached to animals in order to track them visually at night. Such devices can be attached directly to the animal using non-toxic adhesives, or via neck collars, harnesses or tags. Nocturnal lights are primarily used on terrestrial mammals, but they have also been used successfully on amphibious invertebrates (Table 3), and could conceivably be used to track amphibians and reptiles. Depending on the light source, such devices can be used to identify and track nocturnal animals for hours to months or years. The detection distance depends on the device and viewing method and may vary from a few metres to about one kilometre. Note: Betalights consist of radioactive material that decays inside a capsule, causing the phosphor coating to emit light. All the harmful beta radiation is absorbed by the phosphor, and none escapes to affect the bearer of the light.

Advantages

• Allow tracking and identification at night
• Relatively cheap and versatile; applicable to a wide range of species (different light sources and sizes are available)
• Allow identification of individuals (using different intensities, colours, blinking sequences)
• Can provide data for hours to years
• Light characteristics can be linked to physiological parameters: e.g. changes in blinking rate to reflect body surface temperature
• Disturbance of the animal appears to be minimal (depending on attachment method and wavelength of emitted light)
• Allow tracking of marked animals for long periods without direct interference by the researcher

Disadvantages
• Useful for tracking only where there is a clear line of sight between observer and subject; the amount of vegetation cover and habits of the animal will affect tracking
• The physical presence of the device may affect the animal’s behaviour: for example, the animal may vigorously and/or persistently attempt to rid itself of the device, which could result in stress or injury
• May increase the visibility of study animals to prey and predators
• May cause marked animals to be treated differently by conspecifics
• Other disadvantages may be associated with the method of attachment (neck collar, harness, band or tag—see above)

Safeguards
• Adhere to the General Safeguards listed on page 13
• Use non-toxic adhesives to attach lights
• Choose a device with size and light emission characteristics (e.g. infrared) appropriate to the animal
• Adhere to safeguards outlined for other methods of attachment
• Follow safeguards appropriate for use of radioactive material if necessary

Acceptability
• Practicality: Moderate to high, depending on the light source and method of attachment. Nocturnal lights are relatively cheap, versatile and can last from hours to years, but if neck collars, harnesses, bands or tags are used for attachment, significant expertise is required to minimise harm to the animals.
• Biological and welfare acceptability: Moderate to high, depending on the method of attachment. If neck collars,
harnesses, bands or tags are used, the potential for negative effects on health, behaviour and survivorship is significant, especially in growing or developing animals, and animals likely to experience weight changes.

- **Public perceptions**: Generally neutral or positive to the lights themselves. The public may be concerned that lights could increase the visibility of the wearer to predators or prey, but current scientific evidence does not support such concern. Careful explanation could dispel public disquiet about radioactive light sources, e.g. Betalights. The method of attachment is likely to cause more public concern than the lights themselves. Attachment devices that obviously impact on health, or alter behaviour or survivorship would be perceived negatively. This would be especially true of those devices that cause gross injuries due to poor fit, or lead to entanglement or strangulation.

RADIO-, SATELLITE- AND BIO-TELEMETRY AND ARCHIVAL DATA RECORDERS

Telemetry refers to the interception of energy radiated from an animal, with the objective of remotely collecting data on an animal’s location, behaviour and physiology and characteristics of the environment. Energy forms that can be used to transmit such data include acoustic, electric, magnetic and electromagnetic (e.g. visible light, radio- and micro-waves). In wildlife biology, information is most commonly transmitted using high frequency radio-waves (radio-telemetry) (Table 3). Radio-telemetric equipment consists of a transmitter, a power source and a transmitting antenna, all of which must be attached to the animal. Transmitter packages can be externally attached (using adhesives, collars, harnesses, bands or tags), or implanted internally. Radio signals are detected by receiving antennae, which can be hand held or carried on land vehicles, ships, planes or satellites. Satellite-telemetry, including GPS (global positioning systems), enables information to be relayed from the transmitter to a receiver via satellites, thereby reducing the labour and costs associated with conventional telemetric fieldwork. Bio-telemetry refers to the transmission of biological information from sensors on the animal, without direct contact between the transmitter
and receiver. Internal physiological data (e.g. information about heart rates, body temperature, blood and heat flow; or electrocardiograms) can be relayed, along with behavioural data (e.g. diving time and depth) and environmental information (e.g. ambient temperature, light, salinity). Archival data recorders are self-contained bio-telemetric units that collect and archive data for later recovery.

Advantages

- Allows information to be gathered on wide ranging or remote species, which would otherwise be difficult/impossible to study, especially marine species
- A wide range of designs and methods of application make them useful for studying a variety of species
- Continuing miniaturisation of components will allow tracking of smaller animals, tracking for longer periods and more efficient and extensive data collection
- Allows remote, and often continuous, monitoring of location, behaviour and physiology of free-ranging animals, without direct interference by the researcher

Disadvantages

- Telemetric equipment is expensive and complex to use, and successful use of it is highly dependent on operator proficiency
- Suitable only for animals large enough to carry a transmitter package
- Battery capacity/size limits transmission longevity and strength
- The physical presence of the device may affect the animal’s behaviour: for example, the animal may vigorously and/or persistently attempt to rid itself of the device, which could result in stress or injury
- Other disadvantages may be associated with external methods of attachment (neck collar, harness, band or tag – see above)
- Internal implantation of transmitter packages can make an animal vulnerable to the effects of anaesthetic, surgery (risks of infection, adhesion to internal organs) and pain
• Attachment and retention of the transmitter package may be difficult, especially for marine mammals, where increased hydrodynamic drag may alter behaviour and energy expenditure

• Transmitting devices must eventually detach from the animal or be removed, often necessitating recapture

• Recovery of archival recorders is required in order to retrieve data, which may also necessitate recapture

• The amount of information that can be collected by satellite receivers is presently limited by the number of satellites available and their orbits

Safeguards

• Adhere to the General Safeguards listed on page 13

• Select a transmitter package and attachment method appropriate to the animal. In general, packages should not exceed 10% of an animal’s body weight

• Use non-toxic adhesives

• Follow the safeguards outlined for external attachment methods (neck collars, harnesses, bands or tags)

• For transmitter packages inserted into the body, use minimally invasive techniques and appropriate anaesthetic, anti-septic and methods of pain control

• The force-feeding of transmitter packages disturbs behaviour (e.g. snakes) and is no longer recommended

Acceptability

• Practicality: Moderate, because it is versatile and provides unique information, but data collection requires time, expertise and costly equipment. In addition, both external and internal methods of attachment require significant expertise to minimise harm to the animals.

• Biological and welfare acceptability: Moderate, provided all safeguards are followed. Welfare problems relate primarily to the method of attaching the transmitter package, although its weight can also affect behaviour and energy expenditure. If external methods are used, the potential for negative effects
on health, behaviour and survivorship is significant, especially in growing or developing animals. If internal methods are used, risks associated with surgery (e.g. infection) and anaesthetic as well as pain and the adherence of the package to internal organs can adversely affect animal welfare.

- **Public perceptions**: Generally neutral or positive, as the public would probably associate transmitters with conservation or research efforts. However, attachment devices which obviously impact on health or alter behaviour or survivorship, or are disproportionately large or heavy, would be perceived negatively. Attachment of transmitters to endangered animals is likely to be perceived negatively if the associated risks are high.
Permanent methods

Permanent methods tend to create marks that are less readily visible, and often involve tissue damage (permanent or temporary). Despite their designation, there is no guarantee that these marks are permanent, and variables including species, age, environment and operator experience can strongly influence the permanence of marks (Table 4). Permanent marks can be advantageous if they eliminate the need to recapture animals for re-marking and/or identification, and can be used in conjunction with more visible, temporary methods.

TABLE 4. PERMANENT IDENTIFICATION METHODS1.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>SPEED OF APPLICATION</th>
<th>COMPLEXITY</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot brands</td>
<td>Fast</td>
<td>Low–Intermediate, depending on heat source and amount of hair</td>
<td>Low</td>
</tr>
<tr>
<td>Freeze brands</td>
<td>Slow–Intermediate, depending on species</td>
<td>Intermediate–High, depending on method</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Chemical brands</td>
<td>Slow–Intermediate, depending on method</td>
<td>Intermediate–High, depending on method</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Tattoos</td>
<td>Slow</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Passive integrated transponders</td>
<td>Intermediate–Fast</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Visible implant fluorescent elastomer tags</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td>Tissue removal</td>
<td>Fast</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Vital stains</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Intermediate–High, depending on stain and recovery method</td>
</tr>
<tr>
<td>Natural marking identification</td>
<td>Slow–Fast</td>
<td>High</td>
<td>Low–Intermediate, depending on equipment</td>
</tr>
</tbody>
</table>

1 Ranks in columns (e.g. slow, intermediate and fast) are qualitative, comparative scores for the parameter listed for the methods in the table.
Short-Term Stress

<table>
<thead>
<tr>
<th>Short-Term Stress</th>
<th>Influence of Operator</th>
<th>Visibility</th>
<th>Appropriate Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate–High: handling, pain, infection risk</td>
<td>Very High: application duration, temperature of branding iron</td>
<td>Intermediate–High, depending on location, size, success of brand</td>
<td>Terrestrial mammals, pinnipeds, reptiles</td>
</tr>
<tr>
<td>Intermediate: handling, delayed pain, infection risk</td>
<td>Very High: application duration, temperature of branding iron</td>
<td>Intermediate–High, depending on location, size, success of brand</td>
<td>Terrestrial mammals, pinnipeds, small cetaceans, reptiles, amphibians</td>
</tr>
<tr>
<td>Intermediate: handling, skin irritation, infection risk</td>
<td>High: application duration, chemical</td>
<td>Intermediate–High, depending on location, size of brand</td>
<td>Terrestrial mammals, amphibians</td>
</tr>
<tr>
<td>Intermediate–High: handling, pain, infection risk</td>
<td>High: location and depth of ink application</td>
<td>Low</td>
<td>Terrestrial mammals, pinnipeds, reptiles, amphibians</td>
</tr>
<tr>
<td>Intermediate–High: handling, pain, infection risk</td>
<td>Intermediate–High: location and depth of transponder</td>
<td>Not visible</td>
<td>Terrestrial mammals, pinnipeds, birds, reptiles, amphibians, fish, invertebrates</td>
</tr>
<tr>
<td>Intermediate–High: handling, pain, infection risk</td>
<td>Very High: location and depth of elastomer implantation</td>
<td>Intermediate, depending on location and depth of implantation</td>
<td>Larval and transparent-skinned amphibians, fish</td>
</tr>
<tr>
<td>High: handling, pain, infection risk</td>
<td>Low</td>
<td>Low–Intermediate, depending on method</td>
<td>Reptiles, amphibians, some terrestrial mammals and pinnipeds</td>
</tr>
<tr>
<td>Low–High, depending on method of administration and data recovery</td>
<td>Low</td>
<td>Low–Intermediate, depending on method, species, visibility of targeted structure</td>
<td>Terrestrial and marine mammals, larval amphibians</td>
</tr>
<tr>
<td>Low–Intermediate, depending on handling required</td>
<td>Very high</td>
<td>Low–High, depending on marks, size of animal</td>
<td>Any animal with stable, distinguishing natural markings</td>
</tr>
</tbody>
</table>
HOT, FREEZE AND CHEMICAL BRANDING

A permanent brand results from tissue damage caused by the application of excessive heat or cold, or chemicals to the skin (Table 4). Brands can have symbolic shapes to identify groups or individuals, and when successful can produce highly visible, long-lasting marks. The objective of hot branding is to promote the formation of scar tissue, which has few viable hair follicles or is visibly different from the surrounding skin. Freeze branding selectively destroys the pigment-producing cells in the hair follicles, resulting in the production of white hair or depigmented skin, which contrasts with the original coat/skin colour. Likewise, certain chemicals applied to the skin can cause changes in pigmentation.

Advantages

• Large numbers of animals can be marked with only a few symbols in combination
• Hot branding is quick and inexpensive and the mark may last throughout the animal’s life
• Successful brands can result in highly visible marks, which may allow identification from a distance, thereby avoiding the need for recapture
• After healing, there is no energetic cost to the animal because it is not hindered by equipment or extra weight
• Healed brands exert minimal effects on behaviour and physiology
• Handling and brand application are shorter with hot compared with freeze brands
• Marking success can be determined quickly after hot brand application
• Pain and stress during freeze brand application may be less than with hot brands because of the anaesthetic effects of refrigerants
Disadvantages

- Branding success is heavily dependent on operator proficiency
- There is high variability between animals in healing and legibility of brands, especially with freeze branding
- All forms of branding cause tissue damage and subsequently pain and stress, and increase the risk of infection
- Successful branding requires the animal to be securely restrained, immobilised or anaesthetised and this causes handling stress
- Pain-induced vocalisation, struggling, escape behaviours and, with hot branding, smoke from burning hair and/or skin, are aesthetically unpleasant to operators and the public
- Success of freeze and chemical brands cannot be determined until some time after branding
- Chemicals used for branding may cause severe tissue damage, pain and stress
- Hot and freeze brands are not permanent in amphibians
- Freeze brands may not be permanent in marine mammals (e.g. dolphins, manatees)
- Freeze branding may induce moulting in reptiles, thereby increasing their vulnerability to predators
- Freeze and chemical brands may be obscured by natural pigment loss in older animals

Safeguards

- Adhere to the General Safeguards listed on page 13
- Determine optimal brand application time and temperature for the particular species, in order to ensure successful branding, and to minimise pain, infection and premature loss of marks
- Use appropriate restraint, anaesthetic, anti-septic and measures of pain control
- Carefully consider location and size of brands to minimise effects on conspicuousness and camouflage
- Hot branding of amphibians is not recommended owing to the risk of uncontrollable water loss through damaged integument
Acceptability

- **Practicality**: Moderate, because of the permanence and visibility of successful marks. However, inconsistency in healing and legibility make branding less useful. Freeze branding requires complex equipment which is difficult to transport and use in the field.

- **Biological and welfare acceptability**: Moderate, provided all safeguards are followed. All branding necessitates restraint during brand application and causes tissue damage, pain and stress. Wounds that heal quickly have minimal effects on behaviour and physiology, in contrast to those where healing is protracted. When brand marks are illegible after healing, the animal’s welfare would be harmed (e.g. pain of application) with no redeeming benefit.

- **Public perceptions**: Variable. The application of hot brands is aesthetically unpleasant; however, well-healed marks would probably be considered to be acceptable by the public. Poorly healed or infected brands or animals suffering prolonged pain or discomfort owing to brand wounds would elicit negative responses. In addition, unreadable marks would be perceived negatively because the pain and stress caused by branding would have been purposeless. Freeze branding may be viewed more favourably than hot or chemical branding, owing to the anaesthetic properties of refrigerants, but freeze branding requires longer restraint during its application and the results are less consistent. Careful explanation of the benefits of branding may help reduce public disquiet.

TATTOOING

Tattooing refers to the introduction of pigment into the skin of an animal (Table 4). Forceps, needles or hammer instruments can be used to pierce the skin and ink, dye or paste can then be rubbed into the pinprick wounds. Alternatively electro-vibrator systems both pierce the skin and inject the dye, and can be used to ‘write’ an identifying code into the skin. Dye can also be injected subcutaneously or intra-dermally using a needle. Tattooing is considered to be the most permanent method for marking wildlife, but the durability of tattoos depends on the species and
age of the animal, as well as the quality of the application, and the depth and location of the mark. Tattoos are often used in conjunction with more visible, temporary marks.

Advantages

- Tattoos generally last for the animal’s lifetime, and can be used to evaluate loss rates for other marking methods
- Unlimited numbers of animals may be identified individually
- Tattoos can be applied to a wide range of species (small to large)
- After healing, there is no energetic cost to the animal because there is no equipment or extra weight to carry
- Healed tattoos exert minimal effects on behaviour and physiology
- Marks do not usually make animals more conspicuous to predators or prey
- Different pigment colours are available for marking light and dark integuments

Disadvantages

- Durability of the mark is moderately influenced by operator proficiency
- Marks are not readily visible from a distance, so recapture is usually required for identification
- Application of tattoos causes pain and can lead to infection
- Application takes longer than other permanent methods (e.g. hot branding), increasing handling stress
- Furred animals can only be marked on naked parts (e.g. soles of feet, inguinal region, inner lips, ears)
- Tattoos may disrupt integument patterns, especially in small animals, affecting social signalling or camouflage

Safeguards

- Adhere to the General Safeguards listed on page 13
- Use appropriate restraint, anaesthetic, anti-septic and measures of pain control
Carefully consider the location and size of tattoos to minimise the effects on an animal’s conspicuousness and camouflage

Acceptability

- **Practicality**: Moderate. The benefits of mark permanence are offset by the low visibility of tattoos, which makes recapture necessary for identification.
- **Biological and welfare acceptability**: High, provided all safeguards are followed. Pain associated with tattoo application appears to be relatively minor and short lived. Well-healed tattoos have minimal effects on behaviour and physiology.
- **Public perceptions**: Generally neutral or positive. Most tattoos are not visible to the casual observer, and have minimal effects on the behaviour and physiology of the marked animal after healing. Tattoos that are disproportionately large, poorly healed, infected or adversely affect camouflage or social interactions would elicit negative perceptions.

PASSIVE INTEGRATED TRANSPONDERS (PITs)

PITs are small electronic units encased in biologically inert capsules that can be used to identify a wide variety of animals (Table 4). They do not require a continuous power source (e.g. battery); when the tag is held in an electromagnetic field, the microchip transmits its own unique identification code to an electronic reader. PITs are most commonly injected subcutaneously or intra-abdominally, but can also be swallowed (within boluses) or attached as part of an external tag.

Advantages

• Can be used to permanently identify a wide range of animals (small to large)
• Unlimited numbers of animals can be identified individually
• The operational lifespan of each PIT is exceptionally long
• Internally injected PITs are well retained and highly reliable
• Portable and fixed tag monitoring systems are available; fixed readers allow automatic monitoring of free-living animals passing near antennae
• Their very small size and weight mean that PITs do not alter the appearance or behaviour of the animals
• Relatively quick to apply, minimising handling stress

Disadvantages

• PITs, electronic readers and other equipment are expensive
• PITs may migrate away from the site of insertion, making detection difficult and posing a threat to internal organs
• Retention and migration of internally injected PITs is heavily dependent on operator proficiency
• Short reading distances; currently most PIT-tagged animals must be recaptured for identification
• Implantation will cause handling stress and pain, and may lead to infection
• Lack of external signs means that marked animals cannot be distinguished visually; if portable readers fail in the field, marked animals cannot be identified
• The long-term effects of intra-abdominal implants in small animals are not well known

Safeguards

• Adhere to the General Safeguards listed on page 13
• Appropriate restraint, anaesthetic, anti-septic and measures of pain control must be used
• PITs should be placed in areas of low movement, e.g. around the ears or into the body cavity
• PITs should be manipulated away from the point of insertion to reduce transponder loss
• In very small animals, the transponder to body weight ratio should not exceed 10%
• Long-term effects of intra-abdominal implants should be assessed in the species being investigated

Acceptability

• Practicality: Moderate. The benefits of virtually permanent identification are offset by the present high cost of PITs, electronic readers and other equipment. In addition, PIT migration within the body and the inability to visually identify PIT-tagged animals may hinder identification.

• Biological and welfare acceptability: High, provided all safeguards are followed. PITs generally have minimal effects of behaviour and physiology owing to their small size and weight. Exceptions include PITs that migrate and threaten internal organs. The pain of application and risk of infection are relatively minor.

• Public perceptions: Generally neutral or positive, because PITs are not visible to researchers or the public, and do not apparently alter behaviour. PIT implantations that cause prolonged pain, infection or damage internal organs would elicit negative responses.

VISIBLE IMPLANT FLUORESCENT ELASTOMER (VIE) TAGS

VIE tags consist of two bio-compatible elastomer materials which solidify when mixed and can be injected under the skin. Animals can be identified individually by the combination of position and colour of the VIE tags. The material is visualised through transparent skin and is, therefore, suitable only for animals like fish, salamanders and tadpoles (Table 4).

Advantages

• Material is inexpensive and only a small amount is required to mark each animal
• Use of fluorescent material allows detection in dark pigmented skin (under UV light)
• Marked animals are not more conspicuous to predators, prey or conspecifics
• Useful for identifying animals which are otherwise difficult to mark (e.g. salamanders)

Disadvantages
• Only useful for animals with transparent skin
• Misidentification may occur through loss of some inserted material, and recognition of such loss is prevented by an absence of scarring or injection holes
• Success of marking is heavily dependent on operator proficiency
• Implantation can cause handling stress and pain, and may cause infection
• Limited availability of materials

Safeguards
• Adhere to the General Safeguards listed on page 13
• The same number of marks should be applied to each animal at a given study site, to allow recognition of lost marks

Acceptability
• Practicality: High, in a limited context, because of the low cost and opportunity to mark animals which are otherwise difficult to identify.
• Biological and welfare acceptability: High, provided all safeguards are followed. The appearance of the marked animal is unchanged (except to those conspecifics, predators or prey capable of detecting fluorescence). The pain and infection risks associated with implantation are relatively minor.
• Public perceptions: Generally neutral or positive. VIE tags are not visible to the casual observer and appear to have minimal effects on behaviour and survivorship. Negative perceptions would be elicited by those implantations which resulted in prolonged pain or infection, or altered behaviour or survivorship.
TISSUE REMOVALS: EAR NOTCHING; TOE, DISC AND WEB CLIPPING

This method is used for marking a wide variety of animals (Table 4), and is based on the removal of tissue in coded sequences. Each ear, toe, disc or web location is assigned a code and the combination of removals provides a single identification number. The tools for removing tissue include nail clippers, scissors, ear punches and notchers. Toe clipping is the most common method for marking amphibians and reptiles.

Advantages

- Extremely easy, fast and cheap to perform
- Operator proficiency has minimal influence on marking success
- Large numbers of animals can be identified individually
- Tissues collected can provide valuable data on age and genetics
- Tissue removals are permanent in most species (except salamanders and some other amphibians)
- After healing, there is no equipment or extra weight to hinder the wearer

Disadvantages

- Pain of tissue removal is likely to be significant
- Risk of infection is higher than with other permanent methods
- Tissue removals may have significant effects on behaviour, risk of predation and survivorship
- Identification almost always requires re-capture and handling
- More tissue removals (e.g. toes) per animal are required to achieve individual identification as population size increases
- Natural tissue loss can confound identification
- Identification is time consuming and the potential for misidentification is great
- There is potential to spread the chytridiomycosis fungal infection in frogs through toe clipping
Safeguards

- Adhere to the General Safeguards listed on page 13
- Equipment should be kept extremely sharp to minimise bruising and tearing
- Equipment should be kept very clean to prevent transmission of diseases and to minimise the risk of infection
- Researchers should choose a coding system which minimises the number of tissue removals per animal, and coding systems should be well documented for future researchers
- Appropriate restraint, anaesthetic, anti-septic and measures of pain control must be used
- When the effects of tissue removal on behaviour and survivorship are not known, they should be evaluated
- Toe and disc removals should be performed only on animals where associated blood loss is known to be minimal
- Only non-adjacent toes should be clipped and specialised structures should not be altered
- Ear notching should not be performed on species with specialised ears (e.g. otariid seals)

Acceptability

- Practicality: High, because of the low cost, ease and permanence of tissue removal (except with some amphibians).
- Biological and welfare acceptability: Low to moderate, provided all safeguards are followed, given that such tissue removals probably cause considerable pain and stress, and the risk of infection is greater than with other invasive marking methods. In addition, animals must be recaptured and handled for identification, and the effects on behaviour are generally unknown.
- Public perceptions: Negative to neutral. The public may feel that tissue removals without anaesthetic or pain control are barbaric. In addition, those tissue removals that result in infection, or alter behaviour or survivorship are likely to be perceived very negatively. Careful explanation of the benefits and safeguards associated with tissue removal may reduce public disquiet.
VITAL STAINS

Certain chemicals can be used to mark internal anatomical structures in living animals (Table 4). Vital stains can be injected intravenously or administered orally. They allow measurement of the growth of stained tissues (e.g. teeth, bones, hair, claws, gut wall) between the time of stain administration and subsequent inspection. Vital stains are also used for age determination and to study metabolic processes.

Advantages

• Provide information which may be impossible to collect otherwise; e.g. age of cetaceans
• Stains usually do not interfere with biological functioning of animals
• Some stains can be visualised within the live animal
• Oral administration may allow staining without capture or handling

Disadvantages

• Significant stress may be associated with initial capture and handling, and with recapture if it is required for data recovery
• Data recovery usually necessitates tissue removal or euthanasia of the marked animal
• Significant pain and/or risk of infection is associated with tissue removals for data recovery from live animals (e.g. tooth extractions)
• Not useful on a large scale, or for individual identification
• Limited value in field studies, as the equipment and procedures required to perform readings are sophisticated

Safeguards

• Adhere to the General Safeguards listed on page 13
• Select chemicals which are non-toxic and do not interfere with biological function
• Appropriate restraint, anaesthetic, anti-septic and measures of pain control must be used during stain administration and data recovery
• Use appropriate euthanasia techniques when required for data recovery

• Necropsy or tissue removal should be part of well-planned and co-ordinated research, to maximise the information gained from each study animal

Acceptability

• Practicality: Poor to moderate. Animals often have to be captured for staining, and recaptured for data recovery. In addition, data collection usually requires anaesthesia and tissue removal or euthanasia, and sophisticated procedures are often needed for interpreting results.

• Biological and welfare acceptability: Poor to moderate, even when all safeguards are followed. Data collection usually involves invasive tissue removal. Pain and the risk of infection associated with data recovery could be significant, and may have subsequent effects of behaviour and survivorship. Euthanasia, if required, removes the animal from the population.

• Public perceptions: Generally neutral or positive for vital staining itself. However, the public may view tissue removals from live animals and euthanasia of healthy animals for data recovery as unacceptable, even if it means gaining valuable information. This would be especially true for threatened species. If retrieval of stained tissues were incidental to euthanasia conducted for some other reason, it might then be perceived to be more acceptable.

Natural Marking Identification

Although not technically a marking method, identification of animals by their natural markings is commonly used in wildlife biology, especially for those species that are difficult to mark artificially, or for populations that are threatened (e.g. some cetaceans) (Table 4). Characteristics which can be used to identify individuals include: sex and size of the animal; the colour, presence or absence, size, shape, location or configuration of particular marks or structures; idiosyncrasies such scars, deformities or behavioural oddities. Photographic records, sketches and coded descriptors are used to keep track of individual features.
Advances in digital and computer technologies are expected to improve both the objectivity and speed of natural marking identification.

Advantages

- Especially useful for small or contained populations under intensive study
- Non-invasive and does not cause pain
- Does not alter the appearance, behaviour or survivorship of the animal (except for effects of repeated capture and handling when necessary)
- Larger animals can often be identified at a distance, allowing researchers to follow individuals for long periods of time without disturbance
- Sub-groups identified by natural markings can be used as control groups to test the effects of artificial marking on animals

Disadvantages

- Identification is laborious, time-consuming and relies heavily on operator proficiency
- May require recapture and long handling times to identify individuals positively
- Many species lack distinguishing markings, or populations are large or widespread
- Natural marks may not be stable over the lifetime of the animal and may not be unique within the population
- The possibility of misidentification is high, as character assessment is open to observer bias and may be inconsistent over time

Safeguards

- Adhere to the General Safeguards listed on page 13
- Determine the amount of information and number of characters required to get reliable identification of individuals by running a sample trial
• Photographs can reduce handling times required for identification
• Minimise handling stress during any capture
• Oddities (e.g. scars) should be used only to supplement identification, as they may not be unique or stable
• Avoid using graded characters (e.g. shade of colour) as subjective judgement is likely to differ between observers
• For greater reliability, artificial marks may need to be used

Acceptability

• Practicality: Poor to moderate. Natural marking identification is usually laborious, time consuming and heavily influenced by observer bias, but may be the only suitable method for some species. Technological advances have made, and will continue to make, this method more practicable.

• Biological and welfare acceptability: Moderate to high, depending on whether animals can be identified at a distance, or if repeated recapture and handling are required. The method is non-invasive, does not change the appearance of the animal and does not alter behaviour or survivorship (except possibly with repeated capture and handling).

• Public perceptions: Generally positive, as the method is non-invasive, does not cause pain or alter the appearance, behaviour or survivorship of the animal. Repeated capture and long handling times may be perceived as mildly negative, but compared with more invasive marking methods, the public is likely to find this approach more acceptable.
Two Hamilton’s frogs (*Leiopelma hamiltoni*) from the Frog Bank. Note difference in skin colour and pattern, particularly along upper lips.

PHOTOS: DON NEWMAN.
Concluding comments

Scientists have a responsibility to select the most appropriate marking method for the population under study, and weigh the benefits of the research against the method’s associated harms to the individual animal, the population and the ecosystem. Each marking method has its own advantages and disadvantages. These relate to mark application, wearing of the mark and the procedures required for observing the mark. Wildlife managers or researchers who consider using a new marking method, or the application of an existing method to a new population, must first conduct an evaluation of the effects of the method. Application of the General Safeguards, together with those specific to each method, as outlined above, should help to maximise the benefits of marking programmes. Moreover, by following the advice given here, scientists and managers can demonstrate that they have adopted a responsible approach to wildlife marking, which will help to engender and retain public confidence in their activities.

Marking wildlife will always be subject to controversy as there are people who object to interfering with wildlife *per se* and others who object to inflicting pain or stress on any wild animal. In general, however, it is marking strategies that impact negatively on health, welfare, survival, reproductive success or behaviour of the individual, or disrupt population dynamics or ecological balance, that the public would find unacceptable. An informed public will be less likely to respond negatively to encounters with marked wildlife. Information about specific marking programmes should be prominently displayed or otherwise readily available where members of the public are likely to encounter marked animals.